buses, glass cockpits, digital technology, and cell phone were not even in the science fiction movies yet. But, I could install a bungee cord on a super cub landing gear and check the timing on an R-985 radial engine with a time rite. Try asking a new A&P Mechanic in today's world to do that.

Now lets look at today. That same Cessna 120 in decent condition with 5,000 hours on it sells for $26,000.00. Thanks to the microchip every home in the US has a computer in it and every person alive from the age of 10 years and up has a cell phone which in many cases is also a computer with internet access, many aircraft use computers and data buses to operate everything from flight controls, (which by the way are composite), to the coffee pot, and glass cockpits are becoming the norm.

This did not include any radios. The 140 was rated at a max speed of 125 mph with a range of 450 miles. The 140 evolved into the 150, 172, 182, 206, and 210. These are the aircraft that millions of people learned to fly in and were built with sheet metal and rivets, the technology that us older A&P Mechanics were trained to. When I went through A&P school, about 75 years ago, words and things like composites, computers, data buses, glass cockpits, digital technology, and cell phone were not even in the science fiction movies yet. But, I could install a bungee cord on a super cub landing gear and check the timing on an R-985 radial engine with a time rite. Try asking a new A&P Mechanic in today's world to do that.

Now lets look at today. That same Cessna 120 in decent condition with 5,000 hours on it sells for $26,000.00. Thanks to the microchip every home in the US has a computer in it and every person alive from the age of 10 years and up has a cell phone which in many cases is also a computer with internet access, many aircraft use computers and data buses to operate everything from flight controls, (which by the way are composite), to the coffee pot, and glass cockpits are becoming the norm.

The fastest fixed gear single engine piston aircraft in production.
The Corvalis has a maximum cruise speed of 270 mph. The four-seat composite aircraft has a range of 1,438 miles, and is powered by a Continental TSIO-550-C six-cylinder, fuel-injected, twin turbocharged engine with dual intercoolers. **Wow, that sounds like a Hot Rod car enthusiast describing his engine.** The new Corvalis features state of the art standard and optional equipment, and, perhaps most important, the Intrinzic flight deck that uses the new touch-screen Garmin G2000 avionics system as its platform.

Intrinzic is described as a Cessna-designed cockpit that “incorporates the latest developments in human factors engineering, ergonomics and user experience” to make flying simpler.

“We’ve taken an airplane with incredible performance and made flying it even more natural and instinctive with Intrinzic,” said Jack Pelton, Cessna chairman, president and CEO. “At the heart of the new Cessna TTX is the first touch-screen-controlled glass flight deck ever designed for a piston aircraft. The G2000 represents a new generation in advanced avionics–simplified, organized, intuitive.” But what really raises eyebrows is the Cessna chief’s following statement: “This interface is so advanced, it’s the same as what you’ll find in the upcoming Cessna Citation Ten business jet.” The Intrinzic’s G2000 avionics suite features two 14-inch wide aspect ratio, high-resolution LED displays and an infrared, touch-screen controller—the GTC 570 that was just introduced last week. The GTC 570 allows multi-function display page navigation, as well as audio and environmental control.

Other standard avionics include a remote-mounted, digital audio panel, dual AHRS, GFC 700 autopilot, GTS800 traffic system, GTX 33ES transponder with provisions for ADS-B In and Out capability and electronic stability protection to help a pilot maintain stable flight and help prevent the onset of stalls, spins and over-speeds.

The Corvalis TTX also has the L-3 Trilogy glass panel standby instrument system, making it the first Cessna piston with **no analog instruments.** A standard pulse oximeter is available to monitor pilot blood-oxygen levels, with the real-time data displayed on the Multi Function Display.

Two options include Garmin’s GSR56 Iridium satellite datalink for worldwide weather and voice/text capability and the Avidyne TWX670 lightning detection system. All the above was taken from an article written by Chad Trautvetter for the March 2011 issue of General Aviation Aircraft, Avionics

Wow, did you understand a word that was written above. Did you notice that this aircraft has a device that monitors the pilots blood oxygen level and displays it on the multi function display, (whatever that is). Was I trained on pilot blood oxygen level? Maybe I skipped school that day to go fishing. Did you notice that Human Factors Engineering and ergonomics were used in the design. I’d bet Orville and Wilbur are turning over in their graves.

The big question is what are you going to do when this next generation technology aircraft taxies onto your ramp for maintenance. I can hear it now, “Hey Mr. Wrench, I was in cruise at FL 190 when my Intrinzic flight deck wasn't able to communicate with the high resolution LED display through the infrared touch screen causing the electronic stability
protection system to think I was in an over speed condition which caused the Iridium satellite data link voice system to yell at me to pull the throttle back. When the system began yelling at me I spilled my coffee in my lap which of course sent the pilot oximeter into the red zone causing the multi function display to overheat. At that point I called 911. Can you fix it for me, and by the way I need it in an hour

Are you going to work on it? Can you work on it legally? Do you have the knowledge to even speak to the pilot about a discrepancy, not to mention the tech data, special tooling. Which I imagine is a computer program loaded on a laptop.

I realize my story above is a little bazaar, but the point is that we are now way beyond dope and fabric. We’ve talked about next-gen aircraft for years and just kind of figured that that technology is just in the corporate jet and air carrier world. Guess what, it’s here in the under 12, 500 general aviation world.

Maybe it’s time to get that training you’ve been putting off for a long time. Remember that little FAA regulation that we never talk about, 14 CFR part 65.81(b) (general privileges). A certified mechanic may not exercise the privileges of his certificate and rating unless he understands the current instructions of the manufacturer, and the maintenance manuals, for the specific operation concerned. Do you understand inspection and repair of composites and are you familiar and experienced in the troubleshooting, inspection and repair of digital electronics integrated into the operation and control of mechanical components such as a FADEC system. Ask yourself the hard questions and be honest about it, it could save a life. Get some training and be ready for the future because the future is here.

Author: Mike Jordan - Editor
From The FAA: SMS: What It Means for the AMT?

By Barry Ballenger

One of the popular buzzwords today in aviation is SMS or safety management system. The FAA is actively engaged in all aspects of the SMS program development. Even though currently there is no SMS rule, guidance is in place to assist aviation organizations to develop and implement SMS-based processes and procedures to enhance their existing safety programs. A SMS provides a systematic method to control risks and to assure that the risk controls are effective in all aspects of flight and maintenance operations.

The foundation of any SMS is defined by two important aspects. First, the responsibility for the management of the safety of aviation products and services firmly rests with the providers themselves. The FAA sets forth the safety regulations and system requirements necessary to control risks to acceptable levels. The individual providers of aviation services are expected to comply with the regulations to maintain effective control of risk rather than just to meet the administrative requirements of the regulations.

The second aspect of a SMS is that aviation contains inherent risk. Aviation can never be entirely risk free. Risk can only be reduced to an acceptable level. But risk can be managed and the essence of a SMS is to establish a management system that maintains an acceptable level of safety to all aspects of our industry.

Any SMS will contain four basic elements. They provide the overall approach and foundation for an organization to achieve the acceptable levels of safety risk. We will examine each element.

Safety policy

Safety policy is the first element of a SMS. The safety policy provides the requirements, processes, procedures, and expectations of the respective SMS. The policy also includes implementing those procedures and processes and supports the promotion of the safety culture inside the organization. For the maintenance technician, this will be the documents and procedures their organization puts in place for their SMS. Become familiar with these procedures as you have a valuable part in the SMS process.

Safety risk management

The second element of a complete SMS is safety risk management. This element is where the SMS identifies various hazards that exist or may exist within the organization and then provides the processes to analyze and control the risk created by the hazards. This could include anything from hazards associated with moving the aircraft on icy ramps to performing maintenance operations that are unfamiliar to the organization. The key here is to be aware of those items that increase risk to levels that may not be acceptable and then control them to an acceptable level.

Everyone should be monitoring the risk controls to ensure they remain effective.

Risk management as it concerns the maintenance technician includes review of data from the equipment manufacturers, other operators, and any other sources that may assist in defining safety risks with the type of aircraft being maintained. We will discuss in greater detail the subject of risk management in the maintenance arena in a future article.

Safety assurance

Safety assurance is the third element in a successful SMS program. This function oversees the ongoing risk controls to ensure they are maintaining the risk to the desired levels. Safety assurance should be everyone’s responsibility within an organization. Everyone should be monitoring the risk controls to ensure they remain effective at controlling risk. For example, a control process is in place to ensure the safe operation and condition of maintenance equipment. A maintenance technician notices a piece of equipment that requires attention due to a problem that could create an accident.
The maintenance technician must be able to effectively and quickly report it and be assured the situation is remedied before an accident occurs.

Safety promotion

And finally, the fourth element is safety promotion. This is really all about the safety culture within the organization. Every employee should be on the same page when it comes to safety. Encouragement of the safety culture should be promoted from the very top down with emphasis on safety driving all other functions in the organization. Every employee plays a part in the overall success of the system and each employee must realize that their participation is important. Maintenance personnel should not only be on the alert for safety concerns with the aircraft but the total environment in which the maintenance operations are conducted.

Much of this sounds overwhelming and complex. One of the primary concerns with a SMS is that it has to be scalable. The SMS must fit the size of the organization. A SMS for a company with 4,000 employees and 100 aircraft is going to look and feel much different than for a company of 10 employees providing a specific service to the aviation system. And for a single person operating a single aircraft, they may well not even participate in a comprehensive SMS. Individuals are responsible for their primary safety management and it may be very informal and minimally, if at all, documented.

So in looking at a SMS, it is evident that many of the elements discussed are already in place to some degree in most organizations. Any SMS strives to put all of the elements in a planned and organized manner. For most organizations, developing a SMS will consist of documenting and fine tuning the processes they already follow. Some processes will need improvement or require the development of a process to address new issues.

In closing, remember, the operator or service provider has the legal and functional responsibility for safety management within the organization’s line of business. The FAA provides the appropriate oversight to ensure the capabilities of the organization are adequate to control the risk to acceptable levels.

As maintenance technicians you have a very active role in your organization’s SMS program. Don’t take this responsibility lightly; it is a critical part of your job and your commitment to safe operation of aircraft on a daily basis.

Familiarize yourself with the procedures and use them to improve the safe operation of all aspects of your organization. Everyone should be monitoring the risk controls to ensure they remain effective.

Barry Ballenger is the FAA’s Small Airplane Directorate’s program manager for System Safety. He has held A&P and IA ratings for close to 40 years and remains a mechanic at heart.
SAFO 10016

In the last issue we published SAFO 10016 which speaks to Cessna seat stops. The following article was sent in to reinforce why the FAA published the SAFO.

A Closer Look at SAFO 10016 – Missing or Improper Seat Stops in Cessna Models

Following is the “rest of the story” that brought about the issuance of SAFO 10016 on August 26, 2010, (and shown in the last Nuts and Bolts Newsletter)... Take a close look at the photographs below:

Cessna 182 with cotter pin and spacers installed for pilot Seat, aft seat stop (The tie wrap was “extra”).

Cessna 206 with an extra-long bolt and nut installed finger-tight for the pilot seat, front seat stop.

(the aft seat stop was also a bolt/nut combination).
The above photographs are a sampling of those taken during the normal course of surveillance (ramp inspections) of aircraft being operated for hire in various types of operations. While somewhat comical, with the tendency to evoke the comment: “really?!”, the fact of the matter is, the owner’s of these aircraft had no problems with these “hardware” installations. The reasoning presented, more often than not, was the cotter pin or bolt/nut combination, by all accounts, appeared to be “stronger” than the original Cessna seat stops called out for in the Illustrated Parts Manuals (IPC). All of these aircraft had been returned to service in these conditions following an Annual inspection by a mechanic with an Inspection Authorization; however, it was unknown as to when the “stops” were installed, or by whom.

With that in mind, a quick search of the NTSB accident database brings up the following accounts: **non-fatal, 2 uninjured, aircraft substantially damaged:** “…Two bolts were installed through the seat track; one through the most forward hole and one through the most aft hole. The purpose of the bolts was to serve as the fore and aft seat stops. The bolts fit perpendicular to the seat track and were secured to the track using nuts. The most forward hole contained a bolt used as a forward seat stop to prevent the seat from coming off of the seat track. When the seat pin was engaged in this hole, full depth engagement was not possible. Rub marks were present on the bolt shank that was visible through the seat track hole. The pilot normally flew the airplane with the seat in its forward most position. The airplane manufacturer did not design the seat stop and there was no installation record of the bolt used as a seat stop in the airplane maintenance records. According to Cessna Aircraft Company, the approved seat stop uses a U-shaped piece of metal that fits over the seat track and is held using a pin through the side hole. This is secured using a cotter pin. The design does not allow the seat lock pin to engage in the hole through which it is secured.” **Non-fatal, 2 uninjured, aircraft substantially damaged:** “Ground-loop during takeoff run causing gear collapse. Probable cause: Pilot’s inadequate preflight preparation of the fuselage seats; … missing seat stop and lock screw allowing seat to slide back.”

While the likelihood of an accident occurring solely due to improper seat stops being installed or missing altogether, is unclear, the fact of the matter is: it can happen.
The initial thought would be that compliance with the well-known AD87-20-03 R2 – seat rail inspection on Cessna aircraft would cover this issue; however, as pointed out by several industry articles published following the release of the SAFO, that AD does not specifically address the seat stops. We must refer to 14 CFR Part 43.13(b) that states: “…each person maintaining or altering, or performing preventive maintenance, shall do that work in such a manner and use materials of such a quality, that the condition of the aircraft…worked on will be at least equal to its original or properly altered condition…” As the SAFO states, mechanics need to be diligent in inspection and reinstallation of the correct seat stops: U-shaped stop: Cracking/deformation of the u-shaped stop, missing safety mechanisms for the associated pin, etc. Bar-type stop: stripped threads in the screw hole, cracking across the top of the bar, etc. Follow the airframe service manual inspection requirements, and reference the IPC to determine correct seat stop installations. Be the break in the chain of events…safety is no accident.

Author: FAA Inspector Lana Boler

From the Editor:
Author and photographer - Lana Boler, Lana is an FAA Aviation Safety Inspector, Airworthiness Staff Specialist, Southwest Region Headquarters. Lana has been involved in aviation maintenance for 26 years and has held a Mechanic certificate with Airframe and Powerplant ratings for 19 of those years, she also holds an Inspection Authorization and is a Student Pilot. Lana is quoted as saying "I've loved every minute of my aviation career".
ATTENTION - News Flash
AD 87-20-03 Has Been Canned

AD 87-20-03 R2 Amendment 39-6669 on the Cessna seat rails has been superseded by AD 2011-10-09. The new AD will be effective June 17, 2011. 2011-10-09 retains the requirements in 87-20-03 and adds additional steps and better diagrams to make the inspection easier. The additional steps involve inspections of the tang thickness and length on the seat roller housing. They also provided improved graphics for inspecting seat track hole wear and for inspecting proper seat lock pin engagement depth. They itemized the steps, in sequence, to provide clearer guidance for the inspector to do the inspections. Good By 87-20-03 whom I have signed off a thousand times in Cessna maintenance records. You can find the current and complete AD at http://rgl.faa.gov/.

2011-10-09
CESSNA AIRCRAFT COMPANY
Amendment 39-16690
Docket No. FAA-2010-1101; Directorate Identifier 2009-CE-013-AD
PREAMBLE
Effective Date
(a) This airworthiness directive (AD) is effective June 17, 2011.
Affected ADs
(b) This AD supersedes AD 87-20-03 R2, Amendment 39-6669.
Applicability
(c) This AD applies to all serial numbers of the following Cessna Aircraft Company (Cessna) Models that are certificated in any category:
Models - Not printed here to save space, looks like all the models in 87-20-03
Unsafe Condition
(e) This AD was prompted by reports of seats slipping on the rails where the primary latch pin for the pilot/copilot seat is not properly engaged in the seat rail/track and reports of the seat roller housing departing the seat rail. We are issuing this AD to prevent seat slippage or the seat roller housing from departing the seat rail, which may consequently cause the pilot/copilot to be unable to reach all the controls. This failure could lead to the pilot/copilot losing control of the airplane.
HUMAN INTEREST

Raptor The Kitty

In the last issue of Nuts and Bolts we received a response to “What is It?” from John Lewis. John's signature line on his e-mail had a small drawing of an airplane with a cat sitting in the open cockpit, scarf goggles and all. I sent John an e-mail asking what was the significance of the cat in the airplane.

I have seen similar drawings usually with a pretty girl in the airplane with long hair blowing in the wind. Similar to the nose art on the WW2 vintage aircraft but never a cat. I knew there had to be a story behind it. The following is what John sent back:

My wife and I are cat lovers, and we both work for Lockheed Martin in Marietta, GA. In 2006, we adopted a stray kitten, who showed up on our doorstep on the same day that the first squadron of F-22 fighter was declared operational. We named the kitten Raptor, and my email signature is in his honor. Raptor's photo, which we both have as our desktops, is attached.

Author: Mike Jordan - Editor

MASTER MECHANICS

By: Barb Zuehlke Senior Editor AMT Magazine

In honor of AMT Day and Charles Taylor, here are a few of the recent winners of the Master Mechanic Award.

The Master Mechanic Award is named in honor of Charles E. Taylor, the first aircraft mechanic. To be eligible for this award, a recipient must have served at least 50 years as an aviation mechanic and also have been an FAA-certified mechanic for a minimum of 30 years.

Dave Becker

Dave Becker’s aviation career began as an Air Force mechanic; after military discharge he attended and graduated from the Spartan School of Aeronautics. He was employed by Northwest Airlines as a DC-6 mechanic, Republic Aircraft, and then he moved to Eastern Airlines, where he had a 29-year career.

Dave Becker, of Fayetteville, GA, and Elmer Koldoff, of Peachtree City, GA, receive Charles E. Taylor Master Mechanic Awards. Also shown is Ray "Pop" Wilson who received the Master Pilot Award.
HUMAN INTEREST

MASTER MECHANICS

By: Barb Zuehlke Senior Editor AMT Magazine

, progressing to lead mechanic and aircraft inspector. Following his retirement from Eastern Airlines, Becker continued plying his skills at Georgia Tech and Raytheon Aircraft. Residing now in Fayetteville, GA, he has served as crew chief on the PT-26 Cornell and the C-45 Expediter at the Dixie Wing of the Commemorative Air Force at Falcon Field in Peachtree City, GA. Koldoff and Becker are only the 14th and 15th Georgia residents to receive the Master Mechanic Award.

Elmer Koldoff

Elmer Koldoff of Peachtree City, GA, began his aviation career with Capital Airlines, that later became part of United Airlines, where he remained until his retirement. He progressed through the ranks of line mechanic, aircraft inspector, maintenance planner, maintenance foreman, and into management positions as operations manager and station maintenance controller. Transferred by United to Atlanta in 1989, he retired 10 years later with responsibility for aircraft maintenance in Atlanta, Orlando, and Tampa. Koldoff has been involved in restoring military aircraft as a volunteer at Falcon Field in Peachtree City, the home of Dixie Wing of the Commemorative Air Force. He serves as maintenance officer for all of the Dixie Wing aircraft and ground equipment.

Harold Lee Summers

Harold Summers, Arlington, VA, director of flight operations and technical services for Helicopter Association International, received his Charles Taylor Award at Heli-Expo in March. He received his A&P in 1960 and early in his career worked at Baxter Aircraft in Yakima, WA; WenAirCo in Wenatchee, WA; and Rick Helicopters in San Francisco, CA.

The majority of his career was spent at Petroleum Helicopters in Lafayette, LA, where he was responsible for the oversight and management of maintenance planning, maintenance training arrangements, and for providing technical guidance to maintenance personnel. He developed standardized quality programs and safety standards to meet both domestic and international customer requirements. He managed the QA departments and assisted in development of industry standards with HAI and the American Helicopter Society. Phil Randall, assistant national manager of the FAASTeam, presented the award to Summers.

Photo courtesy of Ronald Donner.
Harold Summers, and his wife, after receiving his Charles E. Taylor Award.
Maintenance Safety Tip
Notice Number: NOTC3012

FAASTeam Maintenance Safety Tip
June 2011

Training/Recurrent Training

Although you may have been working in the aviation industry for a number of years, perhaps for the same company and on familiar equipment, situations may arise where changes have occurred to company procedures, modifications have been made to equipment and/or systems, and/or there have been additions to the fleet with similar equipment.

Often we rely on our past knowledge and experience, unblemished record, or peer pressure, and continue on “business as usual.” Instead, maybe we should say “I don’t know,” stop, and get help or get training.

This may be a good time to take a moment and evaluate if you meet the training requirements needed to accomplish the task at hand. In fact, any time you start a new task ask yourself that question.

Don't let ego or peer pressure get in the way of safety!

Be a Fan of the FAA

The FAA expanded its foray into the world of social media in the beginning of May by unveiling its official Facebook page at www.facebook.com/FAA. Together with a Twitter account set up under @FAANews, FAA is well positioned to allow new opportunities for information sharing. In addition to timely postings regarding aviation news and events, the FAA Facebook page also features photographs and a frequently asked questions page.

“Our Facebook page, and our FAANews Twitter feed will help engage the aviation community in conversations about the FAA and increase awareness of DOT programs, policies, and activities,” says FAA Administrator Randy Babbitt.

IA Actively Engaged Issue

I know we promised to follow up on the status of the FAA’s proposal to amend the Inspectors guidance contained in Order 8900.1 concerning the issuance and renewal of the Inspection Authorization with regards to the requirement of being “actively engaged” in maintaining certified aircraft for the two year period prior to application. We did just that, and the final score is FAA headquarters 1 and Nuts and Bolts newsletter 0. We contacted Mr. Hall in the General Aviation Branch AFS-350 as directed in Vol. 75, No.214 in the Federal Register. Mr. Hall confirmed that a change or some form of clarification is in the works. He felt like what went forward was a good product that people would be OK with. He did however, suggested that we hold off on writing an article for the newsletter because we don’t know what the changes or clarification are going to look like when the legal folks (attorneys) get done with it. What I can tell you is that we are working on it at the speed of government. So stay tuned in and we’ll get the information out as soon as we can.

Author: Mike Jordan - Editor
The first correct responder to what is it was Mr. Ed Reinhart who correctly identified the aircraft as the "Flying Flea". Ed Reinhart is the A/C Maintenance Manager with Delta in Cincinnati, Ohio.

Arguably the first homebuilt airplane, the "Flying Flea" was introduced in 1934. It was successfully demonstrated by its designer/builder, Henri Mignet, and with the publication of the plans and instructions soon hundreds of Flying Fleas were being built in homes across Europe and the United States. A temporary set-back occurred when a number of these homebuilt Fleas crashed but detailed investigation by the Royal Aircraft Establishment in England and the French Air Ministry in France revealed the problem and led to the necessary corrections for safe operation. By 1936 Fleas were again flying and have continued to do so ever since. Variations on Mignet's original design can be found in many countries around the world.

The Flying Flea was designed to be an exceptionally easy machine to fly, with no rudder pedals and a simple two-axis control stick. The main forward wing, of the two tandem wings, pivots for ascent and decent while the rudder (and dihedral in the wings) takes care of turns. Mignet claimed that anyone who could put together a packing case could build a Flying Flea and anyone who could drive a car could fly a Flying Flea.

WHAT IS IT?

If you know, be the first to send me an e-mail at "michael.r.jordan@faa.gov" and we will publish it in the next issue and give you credit for your aviation savvy.
FAASTeam “Nuts and Bolts” Newsletter Article Submissions

If you are interested in submitting an article please type your article using 10 point Times New Roman font in a word document. Articles should not exceed 800 words maximum. If pictures are submitted, please title by number to match required caption. Best would be to paste into word document with the captions printed. Limit pictures to reasonable quantity and size for article.

Your submission may be slightly modified to ensure correctness and due to space considerations. No major content change will be made without your notification. You are responsible for content and FAA assumes no liability and/or implied endorsements. Upon completion, please submit to Mike Jordan at Michael.r.jordan@faa.gov

If you are interested in offering a suggestion for an article or if you have a question or issue that you would like clarification on in our “Ask The Feds” column, simply send us an e-mail with your suggestion or request at the address above, and include the form below.

Please submit the following information with your article, suggestion or request.

<table>
<thead>
<tr>
<th>Your Name:</th>
<th>Phone #:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title:</td>
<td></td>
</tr>
<tr>
<td>Company:</td>
<td>email:</td>
</tr>
<tr>
<td>City:</td>
<td>State:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do you wish to have your article published:</td>
<td></td>
</tr>
<tr>
<td>Do you wish to have your name, title and/or company name published:</td>
<td></td>
</tr>
<tr>
<td>Are you a FAASTeam Representative</td>
<td></td>
</tr>
<tr>
<td>I agree and attest to information provided</td>
<td></td>
</tr>
</tbody>
</table>

Signature: